乐鱼体育官网app手机下载
废气净化处理设备环保催化燃烧设备活性炭吸附脱附循环利用
发布时间:2022-08-14 00:45:00 来源:乐鱼体育注册app在线 作者:乐鱼下载官网地址

  废气净化处理设备,环保催化燃烧设备,活性炭吸附脱附循环利用,催化燃烧废气处理设备的催化燃烧工艺描述,催化燃烧处理废气的核心原理:

  1、吸附过程 吸附是气体结合到固体上去的质量传递过程。气体(吸附质)进入固体(吸附剂)的孔隙中但并未进入其晶格内。吸附过程可能是物理过程,也可能是化学过程。

  物理吸附主要是范德华引力起作用,一般没有选择性,在吸附过程中没有电子转移,没有化学键的生成与破坏。化学吸附实际上是一种化学反应,具有选择性,在化学吸附过程中,气体和固体表面发生了化学反应。 最普遍使用的吸附剂是活性炭、分子筛、硅胶和活性氧化铝。这些吸附剂经过处理后表面积极大,可有效吸附碳氢化合物等污染物。其缺点是对水有优先选择性吸附作用。所有的吸附剂在一定的高温下会发生变化。在这些温度下,其吸附能力很弱。污染物可以被解脱出来,从而使吸附剂的活性得到再生,这个过程称为脱附。

  为了进行连续操作,一般提供两个或多个吸附床。一个或几个吸附床在吸附时,另一个或几个吸附床则进行再生。在吸附过程中,被收集的污染物滞留在吸附床中,只要吸附床有足够的容量,污染物就不会释放出来。但是当吸附床中的污染物浓度达到饱和时,污染物便开始释放出来,这种现象称为穿透。达到饱和的吸附床需要进行再生,一般采用加热的气体对吸附床进行脱附,一方面使吸附床重新具有活性,一方面使污染物被解脱出来进行回收或分解处理。

  2、燃烧过程 当气流中的污染物可被氧化时,燃烧是一种彻底的污染控制方案。碳氢化合物就属于这类污染物。燃烧可以分为直接火焰燃烧和催化燃烧两类。燃烧就是在氧和热的作用下将碳氢化合物转化为水和二氧化碳。其反应方程式如下: CnH2m+(n+m/2)O2=nCO2+H2O+Heat 在燃烧过程中,气流量和有机物负荷是选择燃烧技术的重要参数。一个衡量污染物负荷的参数是低爆炸极限(LEL)或低可燃极限(LFL)。

  气流的最低爆炸极限是气体可自燃的最低有机物浓度(100%LEL)。由于100%LEL具有爆炸危险,美国消防协会规定气流的LEL不能超过50%,在LEL超过25%时应设置可燃气体监控装置。另一个要考虑的因素是气流的能量密度,当气流的能量密度必须大于m3时点火后气体可自行维持燃烧,否则需要提供辅助燃料,另外要考虑燃烧后不产生有毒的副产品。 能量值低于m3的气体,可利用催化剂来帮助氧化燃烧。经常使用的活性催化剂是铂或钯的化合物,是用陶瓷作载体。使用催化剂可降低燃烧温度,节省运行费用,但是主要缺点是微量的硫和铅的化合物会使催化剂中毒,而且特定的催化剂对每种有机污染物起到催化燃烧的作用是不同的,对有些有机污染物的去除可能无效。

  在燃烧工艺中,为了节省能源,一般对燃烧使用或产生的热量进行利用。利用方式包括换热和回热两种。换热方式是利用换热器在燃烧后产生的高温气体和低温气体(进气或其他需要热源的气流)之间进行换热能量传递,回热方式是利用蓄热装置直接和气流进行交替热交换,因此热量利用的效率更高。 不同的燃烧工艺组合,形成4种基本的燃烧工艺方式:催化燃烧(换热),直接燃烧(换热),回热催化燃烧(RCO),回热燃烧(RTO)。在此基础上还形成了转轮富集燃烧,陶瓷过滤器等方式。

  有机废气处理催化燃烧设备价格同除尘器、光氧、活性炭的价格是一样的,首先根据处理风量确定价格,风量大的价格就高,风量小的价格就少。另外,催化燃烧废气处理设备还分在线和离线,相同风量的催化燃烧设备,在线的价格高于离线小时收集废气,离线小时收集废气。在线可以边收集废气边脱附,离线就是不收集废气停下来的时候进行脱附。另外影响有机废气处理催化燃烧设备价格的因素还有很多,比如制作材质的不同,活性炭的不同,催化剂的不同,管道、阀门的不同,以及PLC控制的不同,价格也不相同。这个需要和制作厂家直接沟通询价。不过我公司始终认为一分价钱一分货,建议用户采购有机废气处理催化燃烧设备应该亲自去厂家考察,多看几家,多做比较,才能买到高性价比的产品。

  蓄热式催化燃烧装置(RCO)直接应用于中高浓度(1000mg/m3—10000mg/m3)的有机废气净化。

  RCO处理技术特别适用于热回收率需求高的场合,也适用于同一生产线上,因产品不同,废气成分经常发生变化或废气浓度波动较大的场合。

  尤其适用于需要热能回收的企业或烘干线废气处理,可将能源回收用于烘干线,从而达到节约能源的目的。

  蓄热式催化燃烧治理技术是典型的气-固相反应,其实质是活性氧参与的深度氧化作用。在催化氧化过程中,催化剂表面的吸附作用使反应物分子富集于催化剂表面,催化剂降低活化能的作用加快了氧化反应的进行,提高了氧化反应的速率。

  在特定催化剂的作用下,有机物在较低的起燃温度下(250~300℃)发生无焰氧化燃烧,氧化分解为CO2和水。并放出大量热能。

  RCO装置主要由炉体、催化蓄热体、燃烧系统、自控系统、自动阀门等几个系统构成。

  在工业生产过程中,气体首先通过陶瓷材料层预热后发生热量的储备和热交换,其温度几乎达到催化层进行催化氧化所设定的温度,这时其中部分污染物氧化分解;

  废气继续通过加热区(可采用电加热方式或天然气加热方式)升温,并维持在设定温度;其再进入催化层完成催化氧化反应,即反应生成CO2和H2O,并释放大量的热量,以达到预期的处理效果。

  经催化氧化后的气体进入陶瓷材料层,回收热能后通过旋转阀排放到大气中,净化后排气温度仅略高于废气处理前的温度。系统连续运转、自动切换。通过旋转阀工作,所有的陶瓷填充层均完成加热、冷却、净化的循环步骤,热量得以回收。

  工艺流程简单、设备紧凑、运行可靠;净化效率高,一般可达98%以上;与RTO相比燃烧温度低;一次性投资低,运行费用低,其热回收效率一般均可达85%以上;整个过程无废水产生,净化过程不产生NOX等二次污染。催化燃烧装置仅适用含低沸点有机成分、灰分含量低的有机废气的处理,对含油烟等黏性物质的废气处理则不宜采用。

  喷漆室、晾干室排出的气体为低浓度、大流量常温废气,污染物的主要组成为芳香烃、醇醚类、酯类有机溶剂。

  目前,较为成熟的方法是:先将有机废气浓缩以减少需处理的有机废气总量,先采用吸附法(活性碳或沸石作吸附剂)对低浓度常温喷漆废气进行吸附,用高温气体脱附,浓缩的废气采用催化燃烧或蓄热式热力燃烧的方法进行处理。